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The POOL data storage mechanism is intended to satisfy the needs of the LHC experiments to store and analyze the data from 
the detector response of particle collisions at the LHC proton-proton collider. Both the data rate and the data volumes will 
largely differ from the past experience. The POOL data storage mechanism is intended to be able to cope with the experiment’s 
requirements applying a flexible multi technology data persistency mechanism. The developed technology independent 
approach is flexible enough to adopt new technologies, take advantage of existing schema evolution mechanisms and allows 
users to access data in a technology independent way. The framework consists of several components, which can be 
individually adopted and integrated into existing experiment frameworks. 

 
 

1. INTRODUCTION 
The goal of the POOL project is to be able to store 

various types of data, which can be categorized according 
to their nature and role during data processing activities at 
the LHC experiments being prepared at the LHC collider 
at CERN [1]. The POOL data storage and data access 
mechanism is part of the POOL data persistency 
framework [2] and allows physicists of the LHC 
experiments to share the data produced by particle 
collisions at the collider experiments and later refined and 
reprocessed in worldwide distributed computing facilities. 
One of the most important design features of an 
experiment software framework is the way data 
persistency issues are handled. The reasons for the 
approach taken in POOL are described in the following 
sections. 

2. A TECHNOLOGY NEUTRAL SOLUTION 
Persistency support means storage and retrieval of 

objects currently defined in C++ across process 
boundaries. This support ideally is realized without 
intrusion into experiments’ current event models, and 
without requiring run-time or link-time dependence 
between those models and the experiment’s persistency 
technology choices.  

These considerations have led us to conclude that our 
software architecture should support in a transparent way 
the use of different persistency solutions for managing the 
various types of data that must be treated in our data 
processing applications. First the volumes for the different 
data categories vary by many orders of magnitude. The 
event data representing the detector response from particle 
collisions from the different processing stages (raw data, 
reconstructed data and summary data) account for several 
PB/year. Data describing the state of the detector while 
recoding the events typically demand some TB/year. Other 
small amounts of data such as configuration and 
bookkeeping data will require only several GB per year.  

Second, the different access patterns are typical for these 
different data stores e.g. write-once, read-many for event 
data, read and write many for other data, sequential access, 
random access, etc.  

For these reasons we believe that a single persistency 
technology may not be optimal in all cases.  

The POOL software architecture has been designed such 
that the best-adapted technology can be used transparently 
for each category of data. Data are solely accessed through 
the transient data cache, which exposes all required 
functionality to store and retrieve data. To manage the 
huge amount of event data, in addition to simple storage 
and retrieval, placement control to steer the physical data 
clustering is possible. 

This approach, partially inspired by the work of other 
experiments [3,4] will allow evolving smoothly with time 
to more appropriate solutions as they appear in the future. 

In the following the data cache mechanism, the data 
conversion and storage mechanism of the POOL 
persistency framework are described. 

2.1. The Transient Data Cache 
The goal of the POOL architecture is to impose as few 

restrictions as possible on the object to be made persistent 
such as common base classes etc. A physics algorithm can 
deposit objects into the transient data cache, which should 
be made persistent. The data cache is managed by a 
dedicated service, the data service. 

Data services may exist in several instances e.g. 
depending on the nature and the lifetime of the objects 
each service manages. These groups of objects may be 
handled differently e.g. by applying an experiment policy: 
• Event data, which get flushed after the processing of 

one single event 
• Detector data and calibration data 
• Statistical data, such as histograms. 

The main programmatic interface to the data service is 
implemented using a smart pointer approach through so-
called object references. Figure 1 shows how clients can 
access the different data services using this reference 
mechanism. The references also ensure type save data 
access.  

Any object in the persistent world is identified by a 
token. This token describes the location the object in its 
persistent state. The token also allows distinguishing the 
object type in a platform independent manner. For the 
data-cache-service both representations, the transient 
object and the token are equivalent: the presence of a 
token allows to load the object from the persistent storage 
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as illustrated in Figure 2, and on the other hand registering 
an object for persistency results in a token, which in turn 
can be used to uniquely identify and load the object. This 
identity can also be used to persist object relationships. 

Each entry in the transient data cache may contain data 
members, which are primitives, aggregated objects or 
object associations to other objects. Object associations 
have been implemented using reference links in which the 
node does not acquire ownership of the referenced item. 
The ownership of any object belongs to the data cache, 
which through reference counting determines whether an 
object is still accessed by clients or can be dropped.  

 

 

 
Attention was given to the design of the data service in 

order to keep it as an independent component, which can 
easily be replaced by existing cache components of the 
data processing frameworks in various experiments [5,6]. 
Hence, although the data service knows about the 
existence of tokens, it does not interprete the token, but 

only passes the token to the data conversion mechanism. 
The data content of a token is explained in section 2.3. 

 

2.2. The Data Conversion Mechanism 
There are several options for maintaining both data 

representations. One is to describe the user-data types 
within the persistent storage framework (meta-data) and 
have utilities able to automatically create both 
representations using this meta-data. This approach is 
elegant under the assumption that the physical object 
layout does not change between different platforms, 
compilers etc. 

Another possibility is to use generated code in order to 
describe the layout of the transient object, and this is the 
approach chosen in POOL. A technology free description 
of the transient object layout was used to access the 
object's data binding. This component, the Data 
Dictionary [7] was used to program the persistent backend 
with the internal layout of the object data. 

In the event that the persistent backend allows 
describing objects as in ROOT I/O [8] (see Figure 3), this 
mechanism can benefit from such features. Using this 
technique we do not only benefit from the ROOT schema 
evolution mechanism, but also when analyzing data 
interactively because the nature of the objects is preserved. 

Non-trivial gateways, which typically do have the 
flexibility of describing objects, depend strongly on the 
persistent technology. It will hence in the future be 
necessary to implement such gateways also for other 
technologies. On the other hand, simple gateways, which 
for example only map tabular data to homomorphous 
objects, can be implemented generically. 
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Figure 1: Clients access data through references. 
The references interact with the data service. 
Each data service manages a data cache. 
Depending on the requirements of the data cache, 
a data service may manage objects according e.g. 
to their lifetime. 
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Figure 2: De-referencing the internal data of a 
reference leads to a valid transient object 
reference 
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Figure 3: The dictionary generation mechanism
for ROOT based object I/O. The creation of the
persistent dictionaries is possible using the ROOT
preprocessor (rootcint), gcc-xml, a preprocessor
based on the GNU C++ compiler or through
external code generators. The resulting compiled
dictionary allows instructing ROOT with the
persistent object layout. 
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Attention was given to allow the persistent and the 

transient representation of a given object to be identical. 
This approach avoids the necessity to reformat objects 
before clients can deliver them. In the event a non-
standard transformation of the persistent data is required to 
retrieve a given transient shape of an object, a 
transformation callback can perform these complicated 
operations, such as the combination of many small 
transient objects into a single object in order to minimize 
overhead in storage space and I/O. When converted to the 
transient representation, the persistent representation is 
expanded to the individual objects.  

Another example is the regrouping of information 
spread over several persistent items into a new object. 
Such flexibility however requires specifically written 
code.  

 

 
 
Every request for an object from the data service 

invokes the sequence shown in Figure 4: 
1. The client initiates a request to access an object. 
2. The data service searches the data store for the 

requested object. If the object exists, a reference 
is returned and the sequence ends. Any object 
requested is identified by its token. 

3. Otherwise the request is forwarded to the 
persistency service. The persistency service 
dispatches the request to the appropriate 
conversion service capable of handling the 
specified storage technology. 

4. The functionality of the conversion service is split 
in two, where a generic conversion service 
handles all technology independent aspects, 

whereas a technology specific component, the 
storage service handles the aspects, which differ 
between technologies. 
o Tokens only specify a given database by its 

file identifier (FID). In a first step, the 
conversion service retrieve from the file 
catalog component [9] the path to the 
corresponding physical file name. The 
catalog component however is not limited to 
only perform the lookup, but could also 
invoke more complex actions like file 
replications etc. 

o The conversion service determines the 
transformation from the persistent object      
to the requested transient object. By default 
this transformation is trivial and the 
persistent object shape is identical to the 
transient object shape delivered to the client. 

o The storage service instructs the persistent 
technology about the desired object shape 
and retrieves the object. At this stage the 
underlying storage technology and the object 
description derived from the dictionary 
interact. 

5. Before the client may use the object, any token 
representing a reference from the currently loaded 
object to other objects must be registered with the 
data cache to allow loading these objects on 
demand.  

 

 
When making objects persistent, the calling sequence is 

as follows (see Figure 5): 
1. The client starts a data transaction. A transaction 

is limited to the context of one logical database. 
Several transactions may be open at any time as 
long as they do not refer to the same database. 
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Figure 4: Action sequence for loading an object 
from the persistent medium. 
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Figure 5: The different steps when saving objects
to the persistent medium. Only when the
transaction is committed, the data are fully
migrated to the persistent medium. 
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2. The client declares iteratively one or several 
object to be marked for migration to the persistent 
storage. On every request a placeholder for the 
persistent object is allocated. The operation 
returns a unique object token, which identifies the 
object. The total amount of objects, which can be 
marked for write, depends solely on the available 
memory. 

3. The client commits the transaction. 
4. When the transaction is committed, all marked 

objects, which still reside in the data cache, are 
migrated to the persistent medium. During this 
process, all references in a migrating object are       
converted to tokens and stored as well. 

2.3. A Generic Persistency Model 
Traditionally HEP data was accessed through sequential 

files. The file was organized in logical records 
representing one event was partitioned into structures 
called banks.  

The drawback of this sequential file organization is the 
difficulty to access banks from previous processing steps, 
and for example to re-run a reconstruction algorithm while 
analyzing event summary data. Such a behavior however 
does not result from the use of files, but rather from the 
inability of existing persistency mechanisms to address 
individual data items within other files and to read them 
without scanning the file. 

ROOT I/O, relational (RDBMS) and object database 
(ODBMS) technologies allow this type of random access. 
Storing primitive properties of an object with these 
technologies is simple, but it is difficult to store references 
to other objects, as these pointers are only valid in the 
current address space and need special care. 

Commercial databases solve this problem by replacing 
the reference with an object identifier (OID), which allows 
the database engine to locate the persistent representation 
of the object. In addition, the ODBMS engine manages the 
dynamic behavior (methods, polymorphism, inheritance) 
of the objects delivered to the user by setting up the proper 
function table. Unfortunately when using existing 
implementations, this mechanism is implementation 
specific, and does not allow reference to objects outside 
the current database engine. 

To overcome such limitations a generic persistent model 
was developed to allow the following actions: 
• Select the correct storage engine to access the object 

with its desired shape. 
• Locate the object on the persistent storage medium. 
• Read the object data and the object references. 
• Handle the object's dynamic behavior by setting up 

the proper virtual function table through the 
invocation of the constructor. 

Our design assumes that most database technologies are 
based on files or logical files.  Internally these files are 
partitioned into containers ("Root trees" or "Root 
directories" for ROOT I/O, tables in relational database 

technologies) and objects populating these containers (see 
Figure 6). Objects within a container are addressed using a 
record identifier. 

Using these back-end persistency technologies, a 
generic token was designed, which supports the above 
functionality. The database technology identifier, the 
object type, the database file, the container/table and the 
object identifier within the container form a universal 
object address, which allows data items to be addressed in 
nearly any known technology. This information is stored 
in the token, which fully identifies an object and forms a 
relocatable object address.  

The full data content of such a token can be relocated 
between processes and individual users e.g. to 
communicate the identity of a physics event by electronic 
mail. Since the token fully identifies the object within any 
persistent medium, the token is equivalent to the object 
itself and hence allows to easily load objects on demand 
using a smart pointer mechanism. One implementation of 
such a mechanism is the POOL data cache as described in 
section 2.1. 

To store relationships between objects in a logical 
database, this address is split, to minimize persistent 
storage overhead. As illustrated in Table 1 for various 
technology choices, the object type, database technology, 
the database name, the container name are stored in a 
separate lookup table, identified by a primary key, the link 
identifier. Hence, a persistent reference only contains the 
key to this look-up table and the record id of the object in 
the corresponding container. An instance of this look-up 
table is stored in every logical database and allows 
resolving all references from objects within the same 
logical database to any other object in- or outside this 
database. 
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Figure 6: The generic database model. The storage 
service manages one technology, where data are 
partitioned into logical databases. A database has 
containers, which themselves host the individual 
objects. 
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This local object resolution approach ensures, that data 

within individual logical databases are self-consistent. The 
local uniqueness of the objects is extended to global 
uniqueness by granting a unique naming of the individual 
database identifiers and typical problems of commercial 
solutions, trying to define object uniqueness at the level of 
small object identifiers is circumvented. The database 
identifiers are uniquely represented by a GUID, where a 
GUID can be transformed into the physical file name 
using the file catalog component. 

When writing, this look-up table is automatically 
updated whenever a new link that is to be made persistent 
occurs in the object model. 

If the token represents an object in an object database, 
an object association can be directly represented by the 
duple consisting of the record identifier and the object 
identifier. Using such a shortcut, the additional lookup in 
the indirection table may be omitted. Otherwise all 
information required locating the database file, the 
container/table and the corresponding record must be 
determined using a lookup. 

3. EXPERIENCE WITH VARIOUS 
PERSISTENCY SOLUTIONS 

The model described above has been implemented for 
several back-end technologies. In ATLAS, CMS and 
LHCb the POOL data storage mechanism using ROOT I/O 
as a backend solution is currently the preferred solution to 
write event data. Another implementation for a persistent 
backend implementation using relation database 
technology is under development.  

The system has been tested so far on a rather small scale 
and performs well. A detailed analysis of the additional 
cost with respect to CPU and persistent storage is planned 
the before the deployment on a larger scale and the 
integration into the experiment frameworks. The 
additional overhead to implement the object reference 
mechanism is with eight Bytes per association rather 
small. 
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Technology Type ROOT-Keyed ROOT-Tree RDMS ORACLE 

File / Database identifier ROOT File name ROOT File name Database name User login/table space 

Container Identifier Directory Tree/Branch Table name Table/View name 

Object identifier Unique key Record Number Primary Key Primary Key 

Table 1 Layout of the universal container address in the link table. The role of the database name and the 
container name depends on the persistent technology. 


